21 research outputs found

    Optimizing live virtual machine migrations using content-based page hashes

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 55).Virtualization systems such as VMware ESX Server use content-based page hashing to help identify duplicate memory pages within virtual machines. Such duplicate pages, once identified, can then be mapped copy-on-write to a single page in physical RAM, thus saving memory in a manner that is transparent to the virtual machine. The page hashes that are collected in this process can be further utilized. This thesis demonstrates how these page hashes can be used to reduce the time required to migrate running virtual machines from one physical machine to another. Normally, this is done by sending the virtual machine state and all memory contents from the source to destination machine. However, since some memory pages may already be present on the destination, it is possible to reduce the number of pages sent (and therefore total migration time and bandwidth used), by sending only a compact hash instead of the full contents for each page likely to be present on the destination machine. This thesis accomplishes this by creating a database of canonical or "standard" pages to determine which pages can be safely sent as only a hash. Tests of the system demonstrate up to 70% reduction in migration time in idealized workloads, 40% reduction in some realistic workloads, and minimal slowdown in some pathological cases.by Jacob A. Stultz.M.Eng

    Methods for Scarless, Selection-Free Generation of Human Cells and Allele-Specific Functional Analysis of Disease-Associated SNPs and Variants of Uncertain Significance.

    Get PDF
    With the continued emergence of risk loci from Genome-Wide Association studies and variants of uncertain significance identified from patient sequencing, better methods are required to translate these human genetic findings into improvements in public health. Here we combine CRISPR/Cas9 gene editing with an innovative high-throughput genotyping pipeline utilizing KASP (Kompetitive Allele-Specific PCR) genotyping technology to create scarless isogenic cell models of cancer variants in ~1 month. We successfully modeled two novel variants previously identified by our lab in the PALB2 gene in HEK239 cells, resulting in isogenic cells representing all three genotypes for both variants. We also modeled a known functional risk SNP of colorectal cancer, rs6983267, in HCT-116 cells. Cells with extremely low levels of gene editing could still be identified and isolated using this approach. We also introduce a novel molecular assay, ChIPnQASO (Chromatin Immunoprecipitation and Quantitative Allele-Specific Occupation), which uses the same technology to reveal allele-specific function of these variants at the DNA-protein interaction level. We demonstrated preferential binding of the transcription factor TCF7L2 to the rs6983267 risk allele over the non-risk. Our pipeline provides a platform for functional variant discovery and validation that is accessible and broadly applicable for the progression of efforts towards precision medicine

    The HABP2 G534E polymorphism does not increase nonmedullary thyroid cancer risk in Hispanics.

    Get PDF
    Familial nonmedullary thyroid cancer (NMTC) has not been clearly linked to causal germline variants, despite the large role that genetic factors play in risk. Recently, HABP2 G534E (rs7080536A) has been implicated as a causal variant in NMTC. We have previously shown that the HABP2 G534E variant is not associated with TC risk in patients from the British Isles. Hispanics are the largest and the youngest minority in the United States and NMTC is now the second most common malignancy in women from this population. In order to determine if the HABP2 G534E variant played a role in NMTC risk among Hispanic populations, we analyzed 281 cases and 1105 population-matched controls from a multicenter study in Colombia, evaluating the association through logistic regression. We found that the HABP2 G534E variant was not significantly associated with NMTC risk (P=0.843) in this Hispanic group. We also stratified available clinical data by multiple available clinicopathological variables and further analyzed the effect of HABP2 on NMTC presentation. However, we failed to detect associations between HABP2 G534E and NMTC risk, regardless of disease presentation (P≥0.273 for all cases). Therefore, without any significant associations between the HABP2 G534E variant and NMTC risk, we conclude that the variant is not causal of NMTC in this Hispanic population

    Proteomic analysis of the \u3cem\u3eS. cerevisiae\u3c/em\u3e response to the anticancer ruthenium complex KP1019

    Get PDF
    Like platinum-based chemotherapeutics, the anticancer ruthenium complex indazolium trans-[tetrachlorobis(1H-indazole)ruthenate(iii)], or KP1019, damages DNA, induces apoptosis, and causes tumor regression in animal models. Unlike platinum-based drugs, KP1019 showed no dose-limiting toxicity in a phase I clinical trial. Despite these advances, the mechanism(s) and target(s) of KP1019 remain unclear. For example, the drug may damage DNA directly or by causing oxidative stress. Likewise, KP1019 binds cytosolic proteins, suggesting DNA is not the sole target. Here we use the budding yeast Saccharomyces cerevisiae as a model in a proteomic study of the cellular response to KP1019. Mapping protein level changes onto metabolic pathways revealed patterns consistent with elevated synthesis and/or cycling of the antioxidant glutathione, suggesting KP1019 induces oxidative stress. This result was supported by increased fluorescence of the redox-sensitive dye DCFH-DA and increased KP1019 sensitivity of yeast lacking Yap1, a master regulator of the oxidative stress response. In addition to oxidative and DNA stress, bioinformatic analysis revealed drug-dependent increases in proteins involved ribosome biogenesis, translation, and protein (re)folding. Consistent with proteotoxic effects, KP1019 increased expression of a heat-shock element (HSE) lacZ reporter. KP1019 pre-treatment also sensitized yeast to oxaliplatin, paralleling prior research showing that cancer cell lines with elevated levels of translation machinery are hypersensitive to oxaliplatin. Combined, these data suggest that one of KP1019’s many targets may be protein metabolism, which opens up intriguing possibilities for combination therapy

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore